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Abstract

Light Detection and Ranging (LIDAR) technology delivers high accuracy elevation values and ground features. 
However, the capability of this technology is inhibited in terms of its strength to penetrate certain surfaces. For 
instance, LIDAR is limited to the elevation values of the river water surface and not the elevation of its riverbed. 
Hence, topographic and bathymetric surveys are conducted to obtain an accurate set of elevation values for 
areas where the technology is unable to permeate. Bathymetric surveys are conducted using a scientific echo 
sounder equipment, which utilizes sonar technology to determine the river depth relative to the water’s surface 
by transmitting sound pulses and calculating the interval between the emanation and regress of a pulse per unit 
time. Like in all remote sensing measurements, errors are inevitable. Noise and external factors that cause faulty 
or bad readings result in data gaps. Gaps in the gathered elevation data sets can only be identified during filtering, 
which is done after the actual survey. In addition, covering the gaps back in the field would mean additional costs. 
This study aims to maximize data gathered by using different interpolation methods to generate points in the data 
gaps. Inverse Distance Weighting (IDW), Spline, and Kriging methods are used to extrapolate the values within 
the gaps. These values are then used together with the rest of the data for bathymetric data integration into the 
LIDAR data using IDW. Statistical calculations are shown to analyze the accuracy and efficiency of the results.
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Introduction

Raw LIDAR-derived elevation models have high 
accuracy elevation z-values for terrain and surface 
models. However, the considered elevation values 
are limited to the above water level measurement 
of topographical features. To enhance the 
capability of this technology to provide as much 
information as possible, geodetic leveling activities 
are conducted. To obtain elevation values or 
underwater depth and map certain underwater 
features, bathymetric surveys are carried out. 

Hydrographic and bathymetric surveys are 
necessary for various kinds of research studies, 
such as scour and stabilization, flood inundation 
and mapping, spill and fill, and others. Various 
bathymetric survey techniques with corresponding 
survey-grade equipment sets are employed for 
different purposes of hydrographic measurements.

The data obtained from these hydrographic 
surveys are then integrated into the elevation 
models to hydrologically correct the depth of 
the specific water body. Similar to the variation 
of techniques employed during bathymetric 
survey, there is also a selection of bathymetric 
interpolation methods to cater to the variation 
of bathymetric survey methods, bathymetric 
point density, and various types of water bodies. 
The integration of both elevation datasets in 
topography and bathymetry is vital to the 
completion of the digital elevation model.

This study compares several interpolation 
methods of river bathymetry data by studying 
the calibration bathymetry points and calculating 
the root mean square error of the generated 
bathymetry elevation model to the validation 
bathymetry points through the means of creating a 
data gap. This data gap was created manually from 

an otherwise continuous stream of bathymetric 
data. The interpolation methods were tested on 
how well they filled these gaps. In particular, 
the study utilized three interpolation methods 
to generate values: Inverse Distance Weighting 
(IDW), Kriging, and Spline. Each method has 
its own set of configurations that are explained 
further in the paper. The best configuration for 
each method was used together with the rest of the 
data for bathymetric data integration using IDW, 
of which the results were validated and compared 
against each other.

This study dealt with a comparison among 
spatial interpolation methods for computing 
elevation or z-values in data gaps of bathymetric 
data used to measure the elevation of the riverbed 
in meters above sea level (MASL), then integrated 
to the light detection and ranging (LIDAR) 
derived digital elevation model, which has a 
1-meter resolution, to rectify the elevation of the 
riverbed by interpolating the topographic surface 
with the elevation values obtained by survey-
grade equipment. Manual surveys are conducted 
to gather bathymetric data that represents the 
riverbed elevation values, which can be randomly 
distributed and may sometimes carry erratic values 
and/or not carry sensible information at all due to 
instrument limitations. Hence, interpolation of the 
values of the points in the necessary segments is 
performed to predict the missing values, in lieu 
of its error or absence, using the neighboring sets 
of points.

The objective of this study was to outline and 
compare different kinds of interpolation methods 
and their varying configurations to get closer to 
filling in missing data. 

Review of Related Literature

Digital Elevation Model
The LIDAR-derived digital elevation model 

(DEM) is classified into two models—the digital 
terrain model (DTM) and the digital surface 
model (DSM), which showcases different 
topographical features. DTM refers to the 
topographic configuration of the featureless, bare 
Earth (Chen et al. 2017). DSM contains elevation 
values of the features found on the surface of the 
Earth, including both man-made and natural 
objects (Chen et al. 2017; Maune et al. 2007). 
Using a matrix structure in a raster (grid) format, 
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elevation values, and topological relations between 
points in grid cells are recorded to form the DEM 
(Ramirez 2006). The resolution of a grid DEM 
is equivalent to the grid size of the DEM, which 
reflects the ground distance (Liu 2008).

Bathymetry
Hydrographic surveys are conducted 

to acquire data from water surfaces. These 
hydrographic surveys focus on the measurement 
and data collection of the bottom of any form 
of waterbody, such as oceans, lakes, and rivers 
(NOAA 1976). Bathymetric surveys are directed 
towards obtaining data, specifically, the elevation 
of the body of water’s surface. In the case of this 
study, this refers to the elevation of the riverbed. 
Bathymetric surveys are customarily performed 
using acoustic echo sounder equipment, which 
can return accurate depth profiles (Gao 2009) 
calculated from the interval between the return 
times of the pulses on the surface (Klemas 
2011). However, the acoustic echo sounder 
equipment has certain limitations. It is limited 
by efficiency and accessibility (Gao 2009), and 
acquisition of bathymetric data by this piece of 
equipment on shoal waters pose difficulties due 
to certain environmental conditions and technical 
considerations (Tronvig 2005). 

Interpolation
Interpolation is a mathematical process 

of approximation, which determines a set of 
values for parameters or points given the values 
of its neighboring data (Mitas and Mitasova 
2005). In the geographic information systems 
(GIS) environment, interpolation methods are 
programmed to predict values given a set of 
discrete or continuous data. Interpolation has 
practical uses in data management, specifically 
known data alongside missing data, where long-
term cycles are known (Kaya 2014).  However, 
no specific interpolation methods are strictly 
prescribed for use on bathymetric data (Curtarelli 
et al. 2015). 

Inverse distance weighting 
The inverse distance weighting (IDW) 

interpolation method is a local neighborhood 
approach that makes use of the values of its 
nearest neighbors by distance to derive a set of 
neighboring values (Watson and Philip 1985). 
IDW builds its basis on the premise that values 
at the data gaps (unsampled locations) can be 

estimated using the weighted average values of 
the points at a certain neighboring distance (Mitas 
and Mitasova 2005), given that these weights are 
inversely proportional to a given distance (Watson 
1992). IDW is calculated as:

  (1)

where Zj is the unknown value to be interpolated, 
Zi is the known value, β is the weight, δ is the 
smoothing factor, and hij is the separation distance, 
calculated as:

(2)

where Δx and Δy are the distances between the 
unknown point j and the known point i according 
to reference axes (Mitas and Mitasova 2005).

Using IDW interpolation in ArcMap requires 
the power variable. Its purpose is to determine the 
influence of the sample points used to determine 
the value. Its value must be greater than zero. The 
higher the power, the more influence the nearest 
points have on the value (University of Namur 
Department of Geography 2003).

Kriging
Kriging interpolation is a geostatistical 

approach that takes the values of neighboring 
points and their respective locations as basis for 
estimation of the values of the specific points at a 
location (Kiš 2016; Longley et al. 2010) primarily 
revolving around the principle that point values 
near sampled locations should be assigned a 
greater weight in approximating the values for 
prediction in unsampled locations to improve 
its accuracy (Kiš 2016), with the assumption 
that the distance (with respect to the location) 
between point values in sampled locations have 
a spatial correlation that can be a basis for the 
variation of the surface (Childs 2004). The Kriging 
interpolation method was originally designed for 
approximations in the mining industry (Tang 
2005), developed by Georges Matheron and 
Daniel Krige, with principle on the theory of 
regionalized variables (Kerry and Hawick 2005). 
Ordinary Kriging (OK) is a commonly utilized 
Kriging method and is referred to as the best 
linear unbiased estimator (Kiš 2016). The Kriging 
algorithm is expressed as:
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(3)

where n is the number of values, λi is the weight 
for the measured value at the ith location, and S0 
represents the location of the value for prediction.

Spline
Spline interpolation is a piece-wise polynomial 

interpolation, which approximates values by 
using mathematical functions and splines to 
fit values into several fixed points with values 
(Ikechukwu et al. 2017) while minimizing the 
curvature of interpolated surface (Childs 2004). 
In comparison to IDW, the Spline interpolation 
method is designed to consider point values 
outside a minimum-maximum range of values in 
the sample data during the process of estimation 
(Liu 2008), which carries the advantage of this 
method in predicting values in ridges and valleys 
(Childs 2004). Spline interpolation algorithm is 
represented as:

(4)

where n is the number of points, λj are coefficients 
found by the solution of a system of linear 
equations, and rj is the distance from (x, y) to 
(xj,yj).

There are two types of Spline interpolation in 
ArcMap: Spline and Spline with Barriers. Spline 
only requires the weight factor, which has to be 
greater than zero. At the minimum 0.1, the Spline 
interpolation method will try to closely match 
the data. The greater value the weight factor has, 
the smoother the fit will be (Smith 2015). The 
other Spline interpolation method, Spline with 
Barriers, utilizes breaklines in order to constrain 
the influence of closer points that are considered 
coincident points (ArcGIS 2016).

Methodology

Study Area
The bathymetric dataset used for this study 

is the length of the Dapnan River located in 
the Municipality of Baganga, Davao Oriental, 
Philippines. The bathymetric points were obtained 
using South S86 and Trimble Survey Grade Global 
Navigation Satellite System (GNSS) receivers, 

in a combination of zigzag, cross-section, and 
centerline manner along the length of the river 
with a total stretch of approximately 22 km. This 
was gathered by the Data Validation Team of the 
Geo-SAFER Southeastern Mindanao Project 
(2017-2019) of the University of the Philippines 
Mindanao.

To conduct the study, a continuous stream of 
actual bathymetric data was selected as a baseline 
for comparison. The chosen study area is a portion 
of Dapnan River with ideal conditions for the 
baseline, with a length of 1 km. The survey path 
covers 1.29306 km, traversing the center as well as 
some embankments in a zigzag manner. The area 
is home to an uninterrupted stream of 213 sample 
data points. Figure 1 shows this configuration, 
superimposed to the LIDAR digital terrain model 
of the area.

Topography and Bathymetry Dataset
The DTM used for integration with the 

combination of surveyed and interpolated 
bathymetric data was acquired using LIDAR 
technology, with a 1-meter by 1-meter resolution, 
in 2014 by the Data Acquisition Component of 
the Disaster and Risk Exposure Assessment for 
Mitigation (DREAM) Program. 

Data Gap
From the 213 data points of the bathymetric 

dataset, 51 points were intentionally selected 
as missing values and served as data gap. These 
51 continuous points were situated right in the 
middle of the sampled location, with 81 points 
before it and another 81 points after. This was 
made to ensure that there are sufficient value 

FIGURE 1   The 213-point bathymetric dataset 
superimposed to the topographic dataset, 
with the continuous 51-point artificial data 
gap area pointed out by a black brace
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Parameter Constant value
Cell size 1
Number of points 12
Search radius (for Inverse 
Distance Weighting and Kringing 
methods)

Variable

TABLE 1   Common parameters present in all methods

where n is the population and x is the deviation 
of the elevation values in comparison (Chai and 
Draxler 2014). The standard deviation values that 
are calculated for each configuration correspond 
to the typical change in values with the generated 
data points versus the actual data points. The lower 
this value is, the better.

Results and Discussion

The results were computed using the stated 
parameters in the Interpolation Methods section 
and presented with their results in Tables 2, 3, 
and 4 together with their root mean square errors 
(RMSE) and standard deviation. The With Barriers 
technique was observed to have improved the 
results for both Inverse Distance Weighting (IDW) 
and Spline methods. Figures 3 and 4 show the 
graphs of the trend line of IDW method. Figures 5 
through 9 show line graphs of each semivariogram 
model of the Kriging method compared to the 
original dataset. Figure 10 shows the graphical 
representation of the interpolated values using 
Spline method.

Inverse Distance Weighting method results
Table 2 shows the results for the IDW method. 

The input of barriers helped produce results that 
were closer to that of the actual values. It also 
helped the power variable concentrate its influence 
over enclosed spaces, as opposed to the free-for-all 
that happened without the input of barriers.

Figures 3 and 4 show how the generated 
values were versus the actual values. It can be 
observed that the barriers (Figure 4) visually fit 
the actual values better than the IDW method 
without barriers (Figure 3), which itself produced 
a waterfall trend line that signified that it failed 
to smooth out the central values no matter the 
configuration. The configuration of IDW with 
Barriers at Power = 6 was chosen to represent IDW 
in the final step as it is the best performing one in 
terms of RMSE and standard deviation.

Kriging method results
Table 3 shows the results for the different 

semivariogram models available to the Kriging 
method. They all have closely low RMSE 
and standard deviation with the Gaussian 
Semivariogram Model as the worst-performing 
one of the five models. 

Figures 5 to 9 show how the generated 
values from each Kriging Semivariogram Model 

samples for each side of the gap as the basis for 
the prediction of values in the data gap during the 
application of the different interpolation methods 
and algorithms.

Interpolation Methods
Three interpolation methods were used 

to extrapolate the values for the gap. The best 
results for each method were determined based 
on how close these were to the actual values. 
These best results were then used in bathymetric 
data integration. Table 1 shows the common 
base parameters required for all the methods. 
IDW method used five (5) different values in the 
power parameter: 0.25, 0.5, 2, 3, and 6, which are 
then done for both With Barriers and Without 
Barriers techniques, totaling to a combination 
of ten (10) configurations. The Kriging method 
was implemented in five different semivariogram 
models, namely: spherical, circular, exponential, 
Gaussian, and linear. Spline method was 
implemented using both Regularized and 
Spline with Barriers techniques with values: 0.1, 
0.5, and 1, totaling to a combination of six (6) 
configurations. The parameter with the smallest 
root mean square errors (RMSE) for each method 
is then chosen for bathymetric interpolation. 
Figure 2 sums these steps up in a flowchart.

Comparison of Interpolation Methods
Using the best results from the interpolation 

methods, each result was integrated into the 
LIDAR DTM using IDW. A comparison is made 
by comparing their root mean square errors 
(RMSE) and standard deviation values. The sample 
bathymetric points, including those points with 
values derived from interpolation, were integrated 
to form an interpolated surface. The resulting 
interpolated surface of bathymetric data points 
were analyzed and compared in terms of RMSE, 
calculated as:

  (5)
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FIGURE 2   Flowchart of the study
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configuration compare versus the actual values. 
Most configurations generated a very similar 
waterfall. The Gaussian model, however, looked 
visually better due to how it had some spikes 
similar to that of the actual values. While the 
Gaussian model has this advantage, it was not 
enough to justify its use as the best of the Kriging 
semivariogram models due to how bad it performs 
in terms of RMSE and standard deviation. Thus, 
the linear semivariogram model was used to 
represent Kriging. This configuration had the 
lowest RMSE and standard deviation values versus 
the actual values.

The visual peculiarity of the results for the 
Gaussian configuration may be hinting at this 
configuration to be chosen instead, but the data 
overall (RMSE, standard deviation) says otherwise 
as it is the worst performing configuration in the 
Kriging method.

Semivariogram 
model

Root mean 
square error

Standard 
deviation

Spherical 0.39040 0.31398
Circular 0.39035 0.31370

Exponential 0.39498 0.32073

Gaussian 0.44242 0.32147

Linear 0.39030 0.31342

TABLE 3   Parameters and results for Kriging method

Spline value at 0.1, with barriers was chosen to 
represent the Spline method as it had the best 
results.

Figure 10 shows the performance of the 
different Spline configurations superimposed 
on the actual values. There is a huge difference 
between the regularized Spline (orange-themed 
lines) versus Spline with Barriers (blue-themed 
lines) values. The regularized configurations had 
the worst results of all the configurations so far 
and predicted values that were way off the range 
of the actual values. Configurations using Barriers, 
however, managed to stay within expected values 
although RMSE and standard deviation were 
mostly higher than those of the other two methods 
and their configurations.

The best performing configuration for the 
Spline method is the Spline with Barriers method 
at Smoothing factor 0.1. This means there was little 
smoothing done to produce the results.

The approximated values derived from the 
three interpolation methods applied to an identical 
dataset were incorporated into the existing values 
obtained from the ground survey. Table 5 outlines 
the results of each method’s best configuration 
with RMSE, average, and standard deviation 
values for the validation points comprising 20% 
of the bathymetric data points. In each of the 
three interpolation methods, the best fit technique 
according to RMSE value, with respect to the 
individual parameter settings and models, are 
compared for analysis. Comparing the results, the 
parameters that will be used with the respective 
interpolation method are: (1) IDW with barriers 
at the 6th Power, (2) linear semivariogram model 
for Kriging, (3) and Spline with barriers at 0.1 
Smoothing Factor. 

Spline method results
Table 4 presents the results from the Spline 

method. As encountered in the IDW method, the 
input of barriers helped concentrate the algorithm 
into predicting values that are closer to the actual 
ones than the Spline method without it. The lower 

Value

Regularized Spline 
(Weight)

Spline with barriers
(Smoothing factor)

Root 
mean 
square 
errors

Standard 
deviation

Root 
mean 
square 
errors

Standard 
deviation

0.1 9.64757 6.94313 0.48298 0.35641
0.5 6.67182 6.57728 0.65400 0.39609
1.0 4.93911 4.97314 0.65526 0.39365

TABLE 4   Parameters and results for Spline method

TABLE 2   Parameters and results for Inverse Distance 
Weighting (IDW) method

Power

Without Barriers With Barriers

Root 
mean 
square 
error

Standard 
deviation

Root 
mean 
square 
error

Standard 
deviation

0.25 0.45004 0.43700 0.40128 0.36770
0.5 0.44985 0.43622 0.36100 0.33262
2 0.44718 0.43101 0.27528 0.27357
3 0.44460 0.42766 0.26476 0.26705
6 0.42954 0.41193 0.25406 0.25399



8 ojs.upmin.edu.phBANWA B (2021) 16: art058

FIGURE 5   Kriging interpolation method (spherical 
semivariogram model)

FIGURE 6   Kriging interpolation method (circular 
semivariogram model)

FIGURE 7   Kriging interpolation method (exponential 
semivariogram model)

FIGURE 8   Kriging interpolation method (Gaussian 
semivariogram model)

FIGURE 3   Inverse distance weighting interpolation 
method (without barriers)

FIGURE 4   Inverse distance weighting interpolation 
method (with barriers)

FIGURE 9   Kriging interpolation (linear semivariogram 
model)

FIGURE 10   Spline interpolation method
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Conclusion and Recommendation

The bathymetric data integration of the 
combination of survey-acquired values and 
predicted values by interpolation techniques is 
feasible and necessary in the absence of values, 
considering mishaps during data gathering and 
field survey. 

Results from each configuration in all the 
methods (Tables 2 to 4) are the main indicators 
as to how the generated datasets were versus the 
actual values. The figures of the trend lines for 
each configuration (Figures 3 to 10), however, 
paint a picture of the situation in its entirety. 
While configurations under the same method 
generally perform similarly, some of them can 
be indicators of a better fit for the data. This was 
most visible in the case of the Gaussian Kriging 
configuration (Figure 8), as well as methods that 
used Barriers for IDW (Figure 4) and Spline 
(Figure 10). Visual inspection of these trend lines 
will help in detecting behaviors in the data early 
in the process.

This study limited its comparison to three 
interpolation methods and findings showed 
that their performance is nearly similar (Table 
5). Given the RMSE values, the average error 
computed is at 19 cm, which is within the range 
of acceptable RMSE of 20 cm. This similarity in 
their validation results can mean that there are 
many applicable ways to solve the data gap issue. 

However, the limitations of this study should be 
noted, and thus no configuration or method can 
be recommended as being the best one to fill data 
gaps. This situation may not be the same for other 
datasets or situations, but the methodology can be 
used to exhaust the many ways solving for a data 
gap can be achieved.

This study can be further developed by 
comparing the methods to different rivers 
with varying characteristics and considering 
other interpolation methods that are applicable 
to geospatial datasets, while modifying their 
parameter settings and observing their deviations 
as these parameters vary.
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