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Abstract

Extraction of plot-level field measurements entails a rigid and time-consuming task. Fine resolution remote 
sensing technology offers an objective and consistent method for estimation of forest vertical structures. We 
explored the development of algorithms for estimating above-ground biomass (AGB) at the plot level using 
terrestrial LiDAR system (TLS). This research follows IPCC Tier 2 approach, by combining field and remote 
sensing data, in estimating forest carbon stocks. Permanent plots (30 × 30 m diameter) were established inside 
Mt. Apo Natural Park.  Forest inventory was conducted in July 2013, recording tree heights and stem diameters 
for all hardwood species with diameter at breast height (DBH) ≥ 5 cm in three management zones: multiple 
use, strict protection, and restoration. Quadratic mean stem diameter was employed for large DBH intervals for 
deriving midpoint biomass. Three tropical allometric equations were used to derive referenced biomass values. 
Regressions results showed satisfactory modeling fit in relating plot-level AGB to DBH class size: 80%–89%. Mean 
tree heights from field and TLS data were related showing R2 = 88%. TLS variables derived include percentile 
heights and normalized height bins at 5-m intervals.  The generalized linear model is a more robust model for 
percentile heights, while stepwise regression showed a better regression performance for normalized height bins. 
Strict protection zone contained the highest carbon storage. This study demonstrated the significant TLS-derived 
metrics to assess plot-level biomass. TLS scanning is also the first work to be done in this ASEAN Natural Heritage 
Park, which is constrained with local insurgency problems. Biomass in plot-level can be used to extrapolate to 
landscape-level using available multispectral or radar imagery.
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Introduction

Measurement and quantification of forest 
structure is a vital step in developing a better 
understanding of how forest ecosystems work 
(Drake et al. 2002). The ability to estimate forest 
biomass is an important step in estimating the 
amount of carbon in terrestrial vegetation pools 
and relating its significance to global carbon 
cycle studies. The terrestrial LiDAR system (TLS) 
offers the benefit of extracting forest structural 
metrics at the plot level, which are cost-effective 
compared to rigid field measurements. These 
vertical structures can be used to estimate 
above-ground carbon storage (Lefsky 2010). 
LiDAR remote sensing provides the technological 
capability to assess woody plant structures at 
a high level of detail, thereby allowing more 
accurate estimates of biomass over large 
geographic areas. 

TLS technology provides objective and 
consistent, though not necessarily unbiased, 
measurements due to the influence of scanner 
parameters, scan resolution, speed, and pulse 
duration (Pueschel 2013). To increase accuracy 
in the extraction of tree metrics, objects should 
be scanned from multiple locations to reduce 
shadowing or occlusion of background objects 
by foreground objects. Basic inventory tree 
metrics that have shown accuracy in extraction 
are the following: tree location, stem density, 
and diameter-at-breast-height (DBH). Other 
important metrics, however, such as tree height 
and stem volume have not so far been retrieved 
with high accuracy.

In the Philippines, various studies have 
been conducted in selected forest sites aimed 
at estimating carbon storage. First, Han et 
al. (2010) piloted a study using a destructive 
sampling approach from 2007 to 2008 at Mt. 
Makiling Forest Reserve. Their study aimed to 
compare the carbon storage and flux between 
a sixty-year-old secondary natural forest stand 
and a large-leafed mahogany plantation. Their 
results showed that the total carbon storage 
in above-ground biomass, litter layer, and soil 
of the secondary forest stand was 313.12 Mg C 
ha–1, which is 1.7 times larger than the carbon 
storage of the large-leafed mahogany plantation, 
estimated at 185.28 Mg C ha–1. Second, Lasco 
et al. (2004) also conducted a non-destructive 
sampling of a similar study site from 1992 to 
1996. They reported that secondary forest can 
store 418 Mg C ha–1. Finally, in the southern 
part of the country, Lasco et al. (2006) studied 
the effects of selective logging on carbon stocks 
of dipterocarp forests on fixed plots using a 
chronosequence of one to twenty-one years 
after logging. They found that unlogged forests 
had average carbon stocks of 258 Mg C ha–1, of 
which 34% was in soil organic carbon (SOC). 
After logging, the above-ground carbon stocks 
declined by 50%, while changes in SOC showed 
no apparent relationship with number of years 
after logging. 

Our study displays the application of Tier 2 
approach as required by the Intergovernmental 
Panel on Climate Change (IPCC). A high-
resolution TLS data was added to the field 
measurements in developing an algorithm for the 
plot-level biomass. To comply with the Reducing 
Emissions from Deforestation and Degradation 
(REDD) guidelines, the carbon content was 
assessed by forest type (Olander et al. 2008). 

Our research attempts to provide answers to 
these questions: (1) How can TLS technology be 
helpful in developing a plot-level biomass model? 
(2) How does the use of referenced biomass 
from three tropical allometric equations perform 
in estimating plot-level biomass? Destructive 
sampling was not permitted inside the protected 
area, thus biomass was estimated using the 
referenced biomass from three allometric 
equations relating tree height, diameter-at-breast 
height, and wood specificity volume.
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The primary objective of this study is to 
develop algorithms to determine above-ground 
biomass (AGB) at the plot level from terrestrial 
LiDAR data. Our specific objectives include the 
following: (1) relate referenced AGB values from 
three allometric equations to TLS variables; (2) 
identify meaningful TLS variables in estimating 
plot-level AGB; (3) demonstrate the effect of 
multiple scan locations on the accuracy of 
extracting individual tree metrics like height 
and stem diameter; and (4) characterize carbon 
content by management zone and land cover 
type.

Data and Methods

Study Site
The Mt. Apo Natural Park (MANP) is 

located in  Southern Philippines, with primary 
conservation area that covers 54,974.87 ha 
(Figure 1). MANP is bounded by two 
governmental administrative regions: Region XI, 
which lies on the north and south portions of the 
park, and Region XII, which borders the western 
side. Its mean monthly temperature ranges from 
a low of 26.4 °C during January to 27.9 °C during 

April. MANP elevations range from 600 m to 
2954 m asl. 

MANP was declared as a national park on 
9 May 1936 by President Manuel L. Quezon 
by virtue of Presidential Proclamation No. 59. 
Large areas inside the park were destroyed due 
to human settlements and agricultural activities 
(Lewis 1988). In 1984, the International Union 
for Conservation of Nature (IUCN) declared 
Mt. Apo as one of the world’s most threatened 
protected natural areas, drawing international 
attention. The Mount Apo Protected Area Act 
of 2003, or Republic Act 9237, was legislated 
in 2004. Mt. Apo is listed as a natural park and 
was established in 2007 as a World Heritage 
Site (www.mafi.org.ph). On 18 December 2003, 
the Association of Southeast Asian Nations 
(ASEAN) declared Mt. Apo National Park as one 
of only two ASEAN Natural Heritage Parks in the 
country (www.protected planet.net). 

Data Acquisition
Prior to conducting any fieldwork, we 

secured a research permit from the Mt. Apo 
Protected Area Management Board (PAMB). 

Sixteen circular plots at 30 × 30 m diameter 
were scanned during the fieldwork in July 2013. 

PHILIPPINES

 
DAVAO 
GULF



FIGURE 1   Location of the Mount Apo Natural Park research site in Mindanao Island, Southern Philippines 
(Management Zone Map, right, from www.mafi.org.ph)



4 ojs.upmin.edu.phBANWA B (2017) 12:art005

These plots were stratified across the management 
zones, covering the vegetation gradient in 
MANP. The presence of local insurgency activity 
prevented us from sampling additional plots. 
FARO Laser Scanner Focus 3D was placed in five 
different scan locations per plot: center, north, 
east, west, and south. Four scanning targets made 
of volleyballs mounted on 2-m-long polyvinyl 
chloride (PVC) pipes were positioned at each 
of the four sides. The scanner was mounted on 
a tripod at an average height of 1.48 m above 
ground. Each scan runs for six to nine minutes. 
FARO Laser Scanner Focus 3D was used with 
its high-speed 3D laser scanner for detailed 
measurement. FARO Scanner 120 is a touch-
operated screen that produces images of complex 
environments in only a few minutes. This scanner 
emits a laser beam from a rotating mirror out 
towards the scanned area. It then distributes 
the laser beam at a vertical range of 305° and 
a horizontal range of 360°. This laser beam is 
then reflected back to the scanner by objects in 
its path. The laser emits pulses of 905 nm at 1 
cm posting and 120-m range. Its multisensory 
capability enables it to level each scan with 
an accuracy of 0.015° and a range of ±5°. The 
scanner can detect the heights relative to a fixed 
point via an electronic barometer and adds it to 
the scan. Its electronic compass gives the scan an 
orientation.

A geographic positioning system (GPS 
Garmin III plus) was used at the center tree to 
record the plot location. A laser hypsometer 
provided measurements of horizontal distance, 
tree height, and azimuth. A spherical densiometer 
was used to measure canopy cover and its 
complement, the gap fraction. A Kestrel weather 
unit was also employed to provide information 
on elevation, temperature, and relative humidity. 
A prism was used to estimate forest basal area. 
Finally, a compass was used initially to locate 
directions to guide where to place the scan 
targets.

 All hardwood trees with at least 5-cm 
diameter within the circular plot were tagged 
using a standard stick of 1.34 m. Individual 
species for hardwood trees were identified by 
local names with the help of a native guide. 
Diameter-at-breast-height (DBH), height, and 
canopy width were measured for all trees with 

DBH > 5 cm. Canopy cover and basal area index 
were also recorded for the plot. 

Data Analysis

Scan preprocessing and registration. Directional 
raw FARO laser scans were registered using 
FARO SCENE software. Preprocessing was 
applied to detect spheres used as scanning 
targets. Scans were registered with the use of 
at least three reference objects per scanned 
image. Correspondence view was generated and 
registration results with weighted statistics were 
shown. An option was chosen to level scans 
according to inclinometer. The value tension 
describes the discrepancy in the global coordinate 
system between the position and orientation of 
the two corresponding reference objects in at 
least two scans. Values close to zero indicate a 
good registration result. 

Registered scans were exported as point 
cloud and saved as XYZ format. These ASCII data 
were then transformed into *.txt file format using 
SURFER software. SURFER is a full-function 3D 
visualization, contouring, and surface modeling 
program. Its interpolation engine transforms 
ASCII data into more useful 3D surface mapping. 

Vegetation height metrics. The transformed 
ASCII files were imported into the Quick 
Terrain Modeler (www.appliedimagery.com). 
QTM is a three-dimensional point cloud terrain 
visualization software package designed for 
processing LiDAR data. Above-ground-level 
(AGL) analysis was applied with grid sampling 
of 1 m and registered using a global coordinate 
system of Universal Traverse Mercator (UTM) 
with zone of 51N. AGL analysis is a powerful 
tool within the QTM software that enables it 
to convert the absolute elevations into relative 
heights. This tool removes ground and facilitates 
extraction of vertical heights to every point cloud. 
A circular plot was extracted using LASTools 
software to show a 15-m plot boundary. This 
process begins with an acquisition of the 
coordinates for the center tree. The point clouds 
from the circular plot were clipped below an 
elevation of 2 m. 

The resulting image provides the plot 
vegetation with height above 2 m. This vegetation 
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height model was then processed in FUSION 
software to extract percentile heights and 
normalized bin heights. FUSION software 
enables command line programs designed 
specifically for LiDAR data processing. 
 There were two sets of height metrics 
generated from the model. The first set consists 
of point cloud statistics related to mean height, 
maximum height, height standard deviation, 
and percentile heights. The second set of height 
metrics is the normalized height metrics. Height 
bins were classified as 2 to 5 m, 5 to 10 m, up 
to 40 to 45 m. Normalized height bin (NHBin) 
metrics are derived using Equation 1:

NHBin(i) =

Returned points 
for bin (i)

   for i = 5, 10, . . . , 45 (1)
Sum of all total 
returned points

Regression modeling was employed to 
relate the above-ground biomass derived 
using three tropical allometric equations to 
the height statistics. Two types of regression 
models were chosen to evaluate the goodness 
of fit. Generalized linear model (GLM) using 
maximum likelihood estimation was considered 
to assess the relationship between these predictor 
variables. This method estimates the parameters 
of a statistical model, with the assumption that 
tree heights are normally (Gaussian) distributed 
with some unknown mean and variance. The 

second regression model used is stepwise 
regression. A forward selection was chosen that 
automatically adds variables that improve the 
model fit. A variance inflation factor (VIF) was 
also derived for the significant parameters in 
the stepwise regression to detect the presence of 
multicollinearity in the data.

Height and DBH stem maps. Height and DBH 
stem maps were plotted on a Cartesian plane 
for each plot. The reference tree is the center 
tree with (0,0) coordinates. Trees within the plot 
are mapped using the azimuth and horizontal 
distance information (Figure 2). 

These stem maps provide an aerial display 
of the location for each tree within a plot with 
reference to the center tree. In the first step of 
the mapping process, an adjusted angle was 
computed, which is the difference between 360° 
and angle (Ø) for a specific tree. Then polar 
coordinates were computed using the adjusted 
angle and its relation to the angle size of a tree, 
multiplied with a constant factor to convert 
degrees to radians. 

Adjusted angle = 360° – Ø (2)

Polar coordinates = (Adjusted angle + 270°) × 
0.0174532925

(3)

Polar coordinates = (Adjusted angle – 90°) × 
0.0174532925

(4)

 

 

 

FIGURE 2   Tree height map and stem map of a study plot inside a multiple use zone
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Field biomass generation. Biomass density is 
estimated based on the biomass per average tree 
of each DBH class multiplied by the tree density 
in the class. Trees in each plot were classified 
based on DBH class. The DBH classes are as 
follows: 5 to 50 cm, 51 to 100 cm, 101 to 150 cm, 
151 to 200 cm, 201 to 250 cm, 251 to 300 cm, 
and above 300 cm. Tree density was computed 
as the number of trees present per plot based on 
each DBH class. The midpoint of each class was 
computed based on the quadratic mean stem 
diameter (QMSD). Brown (1997) suggested the 
use of QMSD as a better choice, compared to 
the average DBH, particularly for wide diameter 
class. QMSD is defined as the DBH of a tree of 
average basal area in the class. This is derived 
by first computing for the basal area (BA) of the 
average tree. Then QMSD is derived as two times 
the square root of BA divided by π (i.e., 3.1416).

Basal area of 
average tree =

BA of the diameter class
(5)

No. of trees in the DBH class

Quadratic 
mean stem 

diameter
=

BA of the diameter class
(6)

No. of trees in the DBH class

After computing the midpoint of the DBH 
class, tree biomass was calculated using the three 
tropical allometric equations. Then biomass of all 
trees was computed as the product of tree density 
and QMSD per DBH class. Total above-ground 
biomass per plot (Mg plot–1) was computed as 
the summation of all biomass of trees in all DBH 
class.

Referenced biomass. Plot-level above-ground 
biomass was estimated using three allometric 
equations developed by Brown (1997), Ketterings 
et al. (2001), and Chave et al. (2005), respectively. 

Brown (1997) allometry is expressed as 
follows: 

Total above-ground 
biomass (TAGB) = exp (–2.134 + 2.53 ln(DBH)) (7)

where TAGB is total above-ground biomass in 
kg tree–1 and DBH is in cm. 

Ketterings et al. (2001) developed an 
equation as follows: 

Total above-ground 
biomass (TAGB) = r p avg (DBH)2 + c (8)

where r is a parameter that is constant over wide 
range of geographical areas, p avg is the average 
wood density for the study area, and c is the 
parameter estimated by relating DBH and H. 
Ketterings et al. (2001) used these values: r is 
0.11, p avg is 0.604 g cm–3, and c is 0.397.

Chave et al. (2005) generated an allometric 
equation as follows:

Above-ground 
biomass (AGB) = exp(–2.977 + ln (pD2H)) = 

0.0509 × pD2H (9)

where p is the species-specific wood density 
(g cm–3), D is the DBH (cm), and H is height (m).

Figure 3 displays the image processing 
flowchart for the terrestrial laser scan data. 

Results and Discussion

Permanent plots were sampled covering 697 
hardwood trees from three types of management 
zone: multiple use (MU), strict protection (SP), 
and restoration (R). Plots established per zone 
are: MUZ (9), SPZ (2) and RZ (5). Limited 
sampling plots were also discussed in Ribeiro et 
al. (2013) that was evenly distributed across the 
vegetation gradient. 

Mahogany trees were mostly present in MUZ 
with average heights of 20 to 23 m. RZ shows a 
shorter height distribution, with most trees 
at 10  to 13 m tall. SPZ shows the presence of 
multi-stemmed trees found in the upper montane 
type. Tree heights are mostly lumped in the lower 
height at 6 m tall, with few taller trees. 

Scan Registration
Scan merging showed higher deviation 

results with a range from 0.02 to 3.16. Values 
close to zero signify good results. These results 
indicate that target scans or reference objects 
were not accurately detected during point-cloud 
registration. The four targets were not all detected 
at all times from the center scan. There were also 
instances where only one target is detected from 
any directional scan. 
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To remedy this issue, similar-looking 
objects (e.g., branches, hanged backpacks) were 
identified between scans to allow point cloud 
registration. Initial attempts were made to do 
tree-level AGB analysis, but an inspection of 
these point clouds discouraged us from further 
work on this research objective. Therefore, we 
directed our efforts to doing plot-level AGB 
estimation. 

Height metrics derived from LiDAR data 
were generated and related to the field data. The 
regression model for maximum heightshows an 
R2 = 64% for the two observations (Figure 4A). 
However, a better model fit was generated when 
relating mean heights between field and TLS. 
The regression model shows a higher R2 = 88% 

(Figure 4B). These results may suggest that TLS 
may not be able to detect point clouds in upper 
canopies, or those that can be occluded by other 
under-canopy dense vegetation. This study 
also shows that the use of terrestrial LiDAR 
technology can capture accurate understory 
information. 

Referenced Biomass
Brown (1997) suggested the use of quadratic 

mean stem diameter (QMSD) as a better choice, 
as compared to the average DBH, particularly 
for wide diameter class. The QMSD method 
is further explained in the Methods section. 
Table 1 shows an example for a computation 
of plot biomass in Lake Venado 1 using QMSD 

 

Above‐ground level (AGL) analysis and 
ground removal (QTM)

Data Transformation to ASCII format (SURFER) 

Circular plot extraction (LASTools)

Extract vegetation height above 2.0 m (FUSION) 

Normalized height bins 

Maximum Likelihood 
Estimation (JMP) 

‐ Stepwise regression (JMP) 

Biomass Estimation II Biomass Estimation I 

Maximum Likelihood 
Estimation (JMP) 

‐ Stepwise regression (JMP) 

Terrestrial lidar point cloud data (FARO) 
Field Data 

Merge FARO lidar scans (SCENE)  Height, QMSD, 
WD 

Referenced AGB 
estimation (plot‐level) 
using tropical allometric 

equations: 
    ‐ Brown (1997)  
    ‐ Ketterings et al. (2001) 
    ‐ Chave et al. (2005) 

Point cloud statistics 
‐mean height, max height, 

Standard deviation, percentile 

FIGURE 3   Data processing flow chart for terrestrial laser scan data
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approach. The referenced plot biomass for the 
16 plots are shown in Table 2. Information for 
each plot also contains range of values for DBH 
and H, as well as mean biomass computed from 
three tropical equations. Higher values for mean 
biomass are shown for plots with high range for 
DBH values. Biomass values from Chave et al. 
(2005) provided intermediate values between 
Brown (1997) and Ketterings et al. (2001). Brown 
(1997) was based on old forest inventories (i.e., 
1970s or earlier) from various countries and 
used by Food and Agriculture Organization 
(FAO) of the United Nations to estimate plot to 
country-level forest biomass (Saket et al. 2005). 
Brown (1997) is biased to commercial timber. 
Chave et al. (2005) equation was developed using 
time series data from 1950 to 2005 from three 
tropical forests in America, Asia, and Oceania. 
Meanwhile, Ketterings et al. (2001) established a 
site-specific allometric equation using destructive 
sampling in mixed secondary forest in Sumatra, 
Indonesia. 

Biomass values were converted to carbon 
content by a factor of 0.5 (Westlake 1966). 
Table 3 displays plot-level carbon stock estimates 
by management zone and land cover type. 
The comparison for the mean carbon values 
consistently showed that SPZ has the highest 
carbon storage (mean C = 173 Mg C plot–1). Plots 
in the SPZ are open-canopy forest type, while 
RZ has closed-canopy type. Cultivated areas and 
mahogany plantations are found in the MUZ. 
SPZ is characterized by trees with H range of 6 to 
441 m and DBH range of 2.6 to 27 cm in the Lake 
Venado areas. The endemic species, Tinikaran 

TABLE 1      Lake Venado 1 plot biomass using quadratic mean stem diameter (QMSD)

Description
Diameter at breast height (DBH) class (cm)

5–50 51–100 101–150 151–200 201–250 251–300 >301

Number of trees present in plot 21 5 3 3 1 1 1

Quadratic mean stem diameter 
(i.e., midpoint of class, in cm) 22.7 72.5 131.6 165.6 222.0 299.0 376.0

Biomass of tree at midpoint (kg tree–1)a 105.69 2,173.78 12,662.96 20,051.37 33,589.56 56,198.81 120,209.80

Biomass of all trees (Mg plot–1)b 2.21 10.86 37.98 60.15 33.58 56.19 120.21

Total above-ground biomass 
(Mg plot–1) 321.23

NOTES 
a Using the equation from Chave et al. (2005)  
b Biomass of all trees = (Number of trees present in plot × Biomass of tree at midpoint) / 1000
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TABLE 2      Referenced plot biomass from three allometric equations

Plot Location
Diameter at 

breast height 
(cm)

Height (m)
Mean biomass (Mg plot–1)

Brown 
(1997)

Ketterings et al. 
(2001)

Chave et al. 
(2005)

1 Hotmud 20.0–145.0 2.8–24.4  251.7635   88.1334  102.6893

2 Antapan  21.0–432.0 2.9–30.2 1165.9970 360.1668 347.2175

3 Sayaban High School  15.0–136.0 3.1–18.4  323.2434  112.9900  104.2796

4 Sayaban Elementary School 64.0–138.0 6.6–31.7  325.3590   112.8400   112.4940

5 Bongolanon  11.5–206.0 2.3–27.6  247.7589   85.5757 103.7921

6 Tawasan 1  13.0–252.0 4.7–32.3  459.3474 155.3211  128.2037

7 Tawasan 2 27.0–184.0 8.5–32.7  293.4051  103.4965  166.5663

8 Tawasan 3  15.0–200.0 4.4–31.9  283.4871  100.3849   131.4420

9 New Israel 1   9.5–280.0 2.1–35.0  424.2322  160.8764 255.7743

10 New Israel 2 13.0–196.0 3.0–34.1  380.9687  129.7652 200.8526

11 New Israel 3  15.0–233.0 5.3–33.4  305.0471  114.6014  168.2060

12 Matiaw 1 14.0–237.0 4.5–37.7  435.9379  148.3309  215.9812

13 Matiaw 2 13.0–161.0 6.4–25.0  206.5257   69.0125  87.1752

14 Matiaw 3 10.0–186.0 3.9–38.4  289.4739   98.4986  159.7602

15 Lake Venado 1  10.0–376.0 3.0–27.1  971.5203  281.4299  321.2298

16 Lake Venado 2   6.5–441.0 2.6–25.2 1367.4650  368.6408  371.8705

TABLE 3      Plot-level carbon stock estimates by management zone and land cover type

Management zone Land cover type N (plots)
Mean carbon (Mg C plot–1)

Brown 
(1997)

Ketterings et al. 
(2001)

Chave et al. 
(2005)

Multiple use Cultivated area 9 169.0472 59.76951 76.20059

Strict protection Open-canopy forest 2 584.7463 162.5177 173.2751

Restoration Closed-canopy forest 5 234.9698 76.41422 91.28234

(Leptospermum polygalifolium Salisb.), are mostly 
tagged especially in the Lake Venado. There is an 
ongoing reforestation project in the SPZ and RZ 
where Tinikaran seedlings are mostly planted. 
The carbon values differ between the allometries 
used, where Brown (1997) were two times bigger 
than Chave et al. (2005). 

Biomass Estimation I
Three allometric equations were compared 

using linear and logarithmic models to evaluate 
how the independent variables relate to AGB 
(Table 4). The generalized linear model use 
maximum likelihood estimation (GLM/MLE) to 
fit the model. It is a nonlinear estimation method. 
The test statistics of MLE follows a chi-square 
distribution. For nonlinear models, indices such 
as minimum Akaike Information Criterion 

corrected (AICc), minimum deviance, minimum 
Pearson value, or maximum likelihood function 
can be used to compare model validity. In this 
case, the model with lower AICc was chosen to 
depict goodness of fit. AICc is defined as AIC 
with a correction factor for finite sample size 
or when there is a large number of parameter 
(k). This study considered a small number of 
observations, with n = 16 and k = 8. AICc is 
expressed as follows:

AICc = AIC    +
2k(k+1)

(10)
n−k−1

Results of the logarithmic model from using 
the Brown (1997) allometric equation shows the 
model is valid at α = 0.05 level. Five independent 
variables also proved to be significant: mean 
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height, as well as percentile heights at the 25th, 
50th, 75th, and 95th levels. The final equation for 
the predictive model is written as follows:

AGB =
exp(3.56) × meanH68.9  × Per25H−11.08 × 
Per50H−17.09 × Per75H−15.71 × Per95H−11.18

(11)

Based on Chave et al. (2005) allometric 
equation, the MLE model is significant at 
α = 0.10. There were two regressors that were 
significant at α = 0.05 level. These are percentile 
heights at the 50th and 95th levels. Equation 3 
shows the final equation for the predictive model.

AGB = exp(5.51) ×  Per50H−12.0 × Per95H−9.98 (12)

The final equation from Ketterings et al. 
(2001) showed that the logarithmic model 
is significant at α = 0.10 level. There are also 
five independent variables that are significant 
at α = 0.05 level. These are mean height and 
percentile heights at the 25th, 50th, 75th, and 
95th levels. The final equation is written as 
follows:

AGB = exp(3.27) × meanH58.13 × Per25H−9.16  × 
Per50H−14.95 × Per75H−13.13  × Per95H−9.79 (13)

Biomass Estimation II
The second biomass estimation approach 

displays the statistical relationship between 
normalized height bins to AGB. Unlike the 
GLM/MLE model, standard least square is a 

linear model which uses stepwise regression to 
fit the model. The test statistic is an F-test, where 
information for regression sum of square (SSR) 
and total sum of square (SST) are given, enabling 
the computation of R2. The index R2 explains 
the linear relationship between dependent and 
independent variables. A variance inflation (VIF) 
index detects the presence of multicollinearity 
in the data. A VIF index larger than 10 denotes 
presence of multicollinearity. 

Stepwise regression showed a better model 
performance for relating height bins in predicting 
AGB level (Table 5). The R2 level for each model 
are at mid-50% level, which may suggest that 
there are other unexplained factors that were not 
captured with these given independent variables. 

Results from an analysis of variance 
(ANOVA) for the Brown (1997) allometric 
equation showed that the model is valid at 
α = 0.05 level. The significant predictors are 
NHBin25 and NHBin 30. Both independent 
variables have VIF = 2.18, implying an absence of 
any multicollinearity issues. The final equation is 
written as follows:

AGB = 4396.79 × 2651839.9 NHbin25 × 
−6336060 NHBin30 (14)

ANOVA results from the Chave et al. (2005) 
allometric equation showed that the model 
is valid at α = 0.05 level. The only significant 
predictor is NHBin25 with VIF = 2.21. The final 
equation is written as follows:

TABLE 4      Summary of regression results using percentile heights

Equation
Stepwise regression Generalized linear model (GLM)

Model selected
R2 F-stat AICc Prob>X2

Brown (1997)

Linear model 0.49 0.5937 240.00 0.3080

Log-log model -   73.70 0.0351a GLM with lower AIC

Chave et al. (2005)

Linear model 0.50 0.5622 241.97 0.1890

Log-log model -   68.87   0.0560b GLM with lower AIC

Kettering et al. (2001)

Linear model 0.45 0.6706 244.00 0.2897

Log-log model -   71.31  0.0608b GLM with lower AIC

NOTES: a Model is significant at α =0.05   b Model is significant at α =0.10
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AGB = 2608.39 × 613949.8 NHbin25 × 
−948818.8 NHBin30 (15)

The ANOVA results from the Ketterings et al. 
(2001) equation also showed that the model is 
valid at α = 0.05 level. Like the Brown (1997) 
equation, NHBin25 and NHBin30 are significant 
predictors with VIF = 2.18, implying absence of 
data multicollinearity issues. The final equation is 
written as follows:

AGB = 593.9 × 652758.41 NHbin25 × 
−1542118 NHBin30 (16)

The predictive models generated provided an 
insight on how percentile heights and normalized 
height bins relate to estimating plot-level AGB. It 
may be easier for the user to identify height bins 
at 5-m interval than using percentile heights. The 
use of wood density information from allometries 
developed by Chave et al. (2005) and Ketterings et 
al. (2001) would provide additional variability in 
addition to height and DBH information. 

The regression models relating reference 
AGB to TLS height metrics had identified 
significant variables useful for biomass 
estimation. Variables selection techniques like 
GLM/MLE and stepwise regression also were 
useful in presenting how TLS height variables 
predict AGB. The various algorithms presented 
will be helpful in assessing carbon at plot-level 
using non-destructive sampling approach.

Summary and Conclusion

Tropical forests are among the most carbon-
rich ecosystems in the world, with the ability 
to sequester carbon through reforestation, 
agroforestry, and conservation of existing forests. 
Mt. Apo Natural Park contains hardwood tree 
species that have massive diameters of ≥ 300 cm. 

A referenced biomass was used to relate 
to the TLS-derived metrics. These referenced 
biomasses were computed using the three 
tropical allometric equations from Brown (1997), 
Ketterings et al. (2001), and Chave et al. (2005). 
Destructive sampling was not permitted inside 
the MANP protected area. To compute plot 
biomass with large DBH intervals, Brown (1997) 
suggested using quadratic mean stem diameter 
for each DBH class to be used as a midpoint tree. 

The allometric equations considered in this 
study reported a good modeling fit with the 
DBH classes. The predictive models generated 
provided an insight on how percentile heights 
and normalized height bins relate to estimating 
plot-level AGB. It was recommended to identify 
height bins at 5-m interval than using percentile 
heights. Stepwise regression showed a good 
model fit in relating height bins to referenced 
biomass. The use of wood density information 
from allometries developed by Chave et al. (2005) 
and Ketterings et al. (2001) provided additional 
biomass information, in addition to height and 
DBH information. This study also demonstrated 
how the estimated carbon stocks differ between 
three allometric equations. Brown (1997) 

TABLE 5      Summary of regression results using normalized height bins

Equation
Stepwise regression Generalized linear model (GLM)

Model selected
R2 F-stat AICc Prob>X2

Brown (1997)

Linear model 0.52 0.0080a 299.88 0.0159a Stepwise regression

Log-log model - -

Chave et al. (2005)

Linear model 0.46 0.0175a 259.06 0.0335a Stepwise regression

Log-log model - -   

Kettering et al. (2001)

Linear model 0.44 0.0226a 260.87 0.0457a Stepwise regression

Log-log model -  -

NOTES: a Model is significant at α =0.05   
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consistently showed the highest values, while 
Chave et al (2005) provided the intermediate 
values. Ketterings et al. (2001) was developed 
using site-specific estimates, and Brown (1997) is 
biased to commercial timber. 

Our research has demonstrated the adoption 
of IPCC’s Tier 2, a combination of field and 
remote sensing data, in the assessment of 
available biomass levels in a tropical forest. 

Far-flung areas limit the accessibility for 
doing field inventory inside this park. Local 
insurgency restricted our access to the northern 
portion of the park. The use of terrestrial LiDAR 
technology captured accurate understory 
information, which is helpful in extraction of tree 
metrics. The algorithms developed are beneficial 
for future research work to extrapolate the 
biomass levels to landscape and park level using 
available multispectral or radar imagery. 

Our study demonstrated the biomass 
modeling study that needs to be conducted 
in this national park. In compliance to REDD 
requirements, our study also characterized 
carbon content by management zone and forest 
types. These results will provide important 
insights to various stakeholders, both government 
and civic organizations, who are keepers of 
this cultural heritage for effective land-use 
management. The results generated showed the 
ecological importance of these hardwood species 
and their significance in storing carbon stocks. 
These findings will be used to generate a baseline 
carbon stocks information for MANP, which is 
considered as an important forest ecosystem in 
the country.
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