

INVITED PRESENTATION

Wastewater-Based Epidemiology and Data Analytics for Community-Level Pathogen Surveillance and Genetic Tracking: Proof-of-Concept

Dann Marie N. Del Mundo

University of the Philippines Mindanao

Correspondence

Department of Food Science and Chemistry, College of Science and Mathematics, University of the Philippines Mindanao, Mintal, Davao City 8022

E: dndelmundo1@up.edu.ph

Abstract

Over 60 countries have integrated wastewater-based epidemiology (WBE) into their COVID-19 surveillance programs, focusing on wastewater treatment plants (WWTPs). In the Philippines, COVID-19 surveillance relies heavily on clinical diagnostics for symptomatic individuals and their contacts. Hence, this project aimed to establish a proof of concept for wastewaterbased epidemiology as a complementary approach for COVID-19 surveillance, using Davao City—without a WWTP—as a pilot study area. From July 2021 to June 2022, wastewater from the sewer pipes at three sampling sites in a prescreened barangay was assessed. Sewershed network data were generated to estimate the wastewater-contributing population. During this period, wastewater SARS-CoV-2 genome copies and confirmed COVID-19 cases in the contributing population exhibited similar temporal patterns. Additionally, total and fecal coliform levels, along with several physico-chemical parameters such as ORP, DO, TDS, salinity, and conductivity, were significantly correlated with wastewater RNA levels, indicating a potential effect on RNA recovery. This information was considered in the development of a molecular community tracker app for SARS-CoV-2. RT-LAMP assay was developed to allow point-of-risk testing of wastewater in laboratory resource-constrained communities. This multifaceted assessment of WBE provides a contextualized framework for wastewater-based surveillance in low-resource and low-sanitation communities.